

NINGBO BAOSI ENERGY EQUIPMENT CO., LTD.

2022 PRODUCT CATALOGUE

VACUUM PUMP

NINGBO BAOSI ENERGY EQUIPMENT CO., LTD.

ADD: NO.55 Juchao Rd, Jiangkou Subdistrict, Fenghua District, Ningbo, Zhejiang.

TEL: +86-574-88662932 FAX: +86-574-88569596
E-MAIL: bsvacsdexp@cnbaosi.com / dragonsyy@cnbaosi.com

vac.cnbaosi.com | www.cnbaosi.com

If you want to know more about Baosi Vacuum Pump, please kindly call for more detailed technical data. Thanks

Official Account V

LEARNING

Choose the right direction, learning by watching, listening and asking to digest and absorb.

PERSEVERANCE

Choose the spirit, adjust yourself and hold out to the end.

HARMONY

Choose a good, make happy and progress by communication, praise and humility.

PROFESSION

Choose perseverance, specialize in one field and get the career achievement.

CONTENTS

OIL ROTARY VANE VACUUM PUMP	07-12	ROOTS VACUUM PUMP	13-16
SCREW DRY VACUUM PUMP	17-22	SCROLL VACUUM PUMP	23-24

OIL/VACUUM FLANGE

AND FITTING

25-28

VACUUM

VALVES

CONTENTS

ABOUT US

TO GET YOUR SATISFACTION

NINGBO BAOSI ENERGY EQUIPMENT CO., LTD.

Ningbo Baosi Energy Equipment Co., Ltd. was founded in 2005, and in April 2015 the company began to issue stocks on the Shenzhen Stock Exchange (stock code: 300441). Headquartered in Chiang Kai -shek's hometown, holy land of Maitreya--- Fenghua.

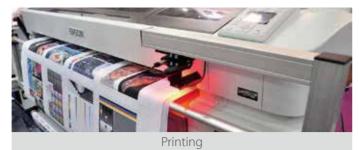
The company bases on the compacted high-end precision parts manufacturing, extend to hign-end alloy materials, equipment as well as integrated systems to achieve the development goal, to be a modern enterprise with high-end manufacturing core technology and harmonious development.

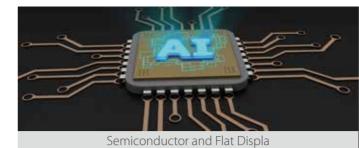
The company takes Learn, Harmony, Perseverance and Profession for enterprise culture, and advocates Maitreya culture, promote the spirit of Maitreya.

BAOSI ESTABLISHED VACUUM GROUP

In 2011, Baosi established Vacuum Group, which specialized in design, manufacturing and sales of vacuum products. And in 2018, vacuum division developed into Vacuum Group.

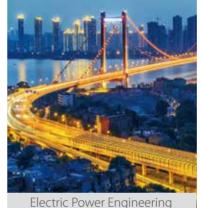
Baosi Vacuum Group took the corporate culture as the core idea, aimed at providing one-stop vacuum solutions for customer, concentrating on making Baosi Vacuum be a world-class well-known vacuum brand.





INDUSTRY INVOLVED

People-oriented, common values, sincerely valued customers, comprehensive grasp of customer requirements, customers above all else, harmonious development, shared prosperity.

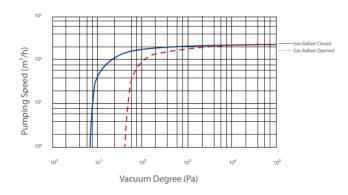


Plastic and Rubber

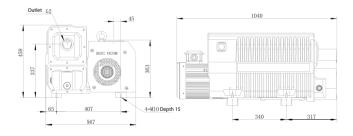
ONE PHONE CALL EXCELLENT SERVICE 400 1006 555

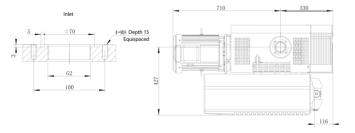
③ B∆OSI V∆CUUM

SINGLE STAGE ROTARY VANE VACUUM PUMP



SRV630 [750]


FEATURES

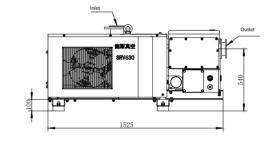

- The use of non-spring rotary vane to achieve low noise, low vibration and long service life.
- Built-in oil check valve is used to avoid the oil return phenomenon.
- Built-in forced fed oil pump is used to ensure the long-term continous operation of the pump at atmospheric pressure.
- The use of air cooling, oil cooling, water cooling and other cooling methods to ensure the good cooling effect, and make the long-term stable running of the pump as well as the stable pumping performance.
- Reasonable structure has the advantages of easy assembly and disassembly, as well as the fast and easy maintenance.

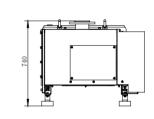
PUMP RATE CURVE

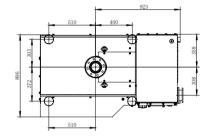
INSTALLATION DIAGRAM

SRV300 TECHNICAL PARAMETER

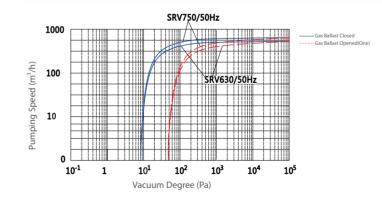
MODEL	SRV300	50Hz		60Hz
MODEL		30112		00112
Nominal Pumping Speed	m³/h	280		340
Actual Pumping Speed	m³/h	240		290
Ultimate Pressure	Pa		≤ 8	
Ultimate Pressure (With Gas Ballast)	Pa		200	
Motor Power	kW		5.5	
Motor Rated Speed	rpm	1450		1750
Oil Filling (Min / Max)	-		8/10	
Inlet	-		G2	
Outlet	-		G2	
Weight	kg		200	


∃∆OSI V∆CUUM


TECHNICAL PARAMETER


MODEL			SRV630	SRV750
Actual Pumping Speed-Pum	ping Speed	m³/h	630	755
	Without Gas Ballast	Pa		≤ 8
Ultimate Pressure	One Gas Ballast	Pa		≤ 70
	Two Gas Ballasts	Pa		≤ 200
Allowable Pressure of Water	One Gas Ballast	Pa	4000	5000
Vapor-Water Vapor Tolerance	Two Gas Ballasts	Pa	6000	7000
Allowable Amount of Water	One Gas Ballast	kg/h	17	24
Vapor-Water Vapor Capacity	Two Gas Ballasts	kg/h	26	34
Noise Level		dB(A)	76	80
Motor Rated Power		kW	15	18.5
Motor Speed		rpm		1460
Protection Class		-		IP55
Power Consumption at Ultimat	te Pressure (without gas ballast)	kW		6.4
Power Consumption at 100r	nbar Inlet	kW		12.5
Pump Rated Speed		rpm	820	1000
Waight	Without Oil	kg	675	740
Weight	Oil	kg	695	760
Oil Filling (Min / Max)		L		27/29
Inlet		-	DN	100ISO-K
Exhaust		-	See Installa	tion Dimensions
Exhaust Thermal Protection	Switch	-	-	-

[•] Noise is measured at an angle of 45 ° above the air inlet of the pump at a distance of 1 meter


INSTALLATION DIAGRAM

PUMP RATE CURVE

© B∆OSI V∆CUUM

TWO STAGE ROTARY VANE VACUUM PUMP

DRV3 [5 10 16 24]

BSV30 [40 60 90]

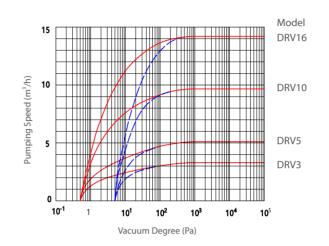
BSV175 [275]

TECHNICAL PARAMETER

MODEL			DRV3	DRV5	DRV10	DRV16	DRV24
Dumning Data	50Hz	m³/h (L/min)	3.6 (60)	5.4 (90)	9.9 (165)	14.4 (240)	20 (336)
Pumping Rate	60Hz	m³/h (L/min)	4.3 (72)	6.5 (108)	12 (200)	17.4 (290)	24 (403)
Ultimate Pressure Gas Ballast Closed		Pa			5X10 ⁻¹		
Offimate Pressure	Gas Ballast Opened	Pa			5		
Motor Power	380V (Triphase)	kW		0.4 (4 Poles)		0 FF (4 Dalas)	0.75(4 Poles)
Motor Power	220V (Single Phase)	kW		0.4 (4 Poles)		0.55 (4 Poles)	0.75(4 Poles)
Oil Filling		L	0.7	0.7	1.1	1.2	0.75~1.5
Inlet		KF			KF25		
Outlet		KF			KF25		
Weight		kg	22.5	22.5	25	27	32

MODEL			BSV30	BSV40	BSV60	BSV90
Dumning Data	50Hz	m³/h (L/min)	30 (500)	40 (667)	60 (1000)	90 (1500)
Pumping Rate	60Hz	m³/h (L/min)	36 (600)	48 (800)	72 (1200)	108 (1800)
Ultimate Pressure	Gas Ballast Closed	Pa				
Offiffate Pressure	Gas Ballast Opened	Pa			2.0	
Motor Power (4P)		kW	1.1	1.5	2.2	3.7
Voltage	Triphase	V		38	0,400	
Oil Filling		L	1.2~	2.8	2.5	~4.2
Inlet		KF			40	
Outlet		KF			40	
Ambient Temp.		$^{\circ}$		5	~40	
Weight		kg	63	65	87	101

MODEL			BSV175	BSV275
Dumping Data	50Hz	m³/h (L/min)	160 (2656)	255 (4233)
Pumping Rate	60Hz	m³/h (L/min)	196 (3254)	306 (5080)
Mater Potational Speed	50Hz	r/min	1440	1440
Motor Rotational Speed	60Hz	r/min	1720	1720
Motor Power	Triphase /4 Poles	kW	5.5	7.5
I libina da Duagas una	Gas Ballast Closed	Pa	5X10 ⁻¹	5X10 ⁻¹
Jltimate Pressure	Gas Ballast Opened	Pa	2	2
Allowed Maximum Outlet Pressure	Gauge Pressure	MPa	0.05	0.05
Maximum Capacity of Water Vapor	-	kg/h	2.4	2.5
Inlet	JIS	DN	VG80	VG80
Outlet	JIS	DN	VG50	VG50
Oil Filling	Max	L	25	28
Oil Filling	Min	L	20	23
Cooling Water Requirement	Water Temp 20°C	L/h	80	120
Weight	With Motor	kg	230	255


- The value of 'ultimate pressure' in the sheet is measured by Pirani gauge when the Baosi special pump oil is used, and the value should be 5X10⁻², if the Mcleod gauge be used.
- Therefore, the Baosi special pump oil is recommended to guarantee the pump performance.

PUMP RATE CURVE

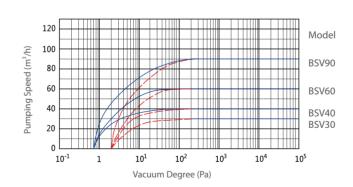
DRV3[5 10 16]

Power supply: 380V 50HZ Vacuum gauge: Pirani Gauge Vacuum pump oil: Special oil BSO-46


——Gas Ballast Closed ——Gas Ballast Opened

DRV24

Power supply: 380V 50HZ Vacuum gauge: Pirani Gauge Vacuum pump oil: Special oil BSO-68


---- Gas Ballast Closed ----- Gas Ballast Opened

BSV30[40 60 90]

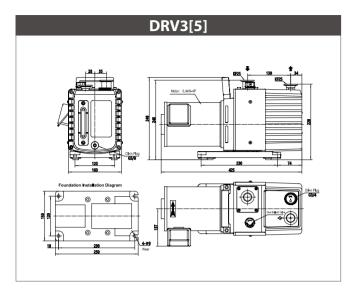
Power supply: 380V 50HZ Vacuum gauge: Pirani Gauge Vacuum pump oil: Special oil BSO-68

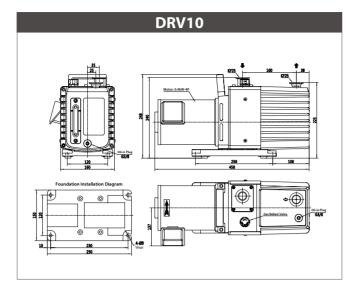
----- Gas Ballast Closed ----- Gas Ballast Opened

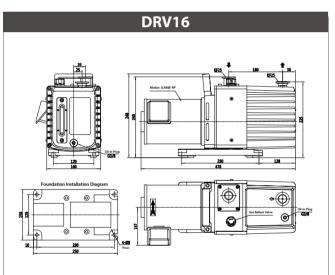
BSV175[275]

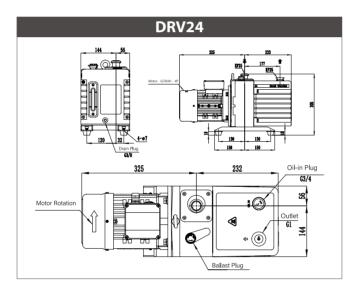
Power supply: 380V 50HZ Vacuum gauge: Pirani Gauge Vacuum pump oil: Special oil BSO-68

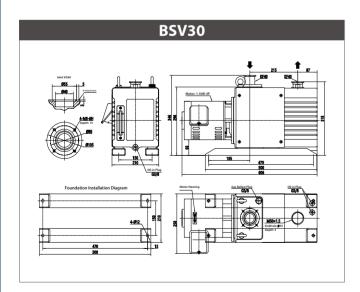
——Gas Ballast Closed ----- Gas Ballast Opened

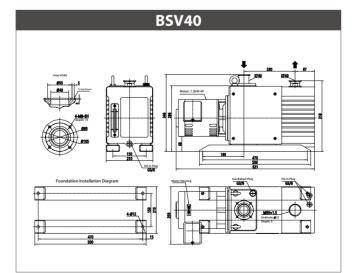


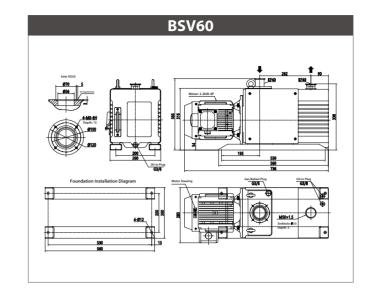

∃∆OSI V∆CUUM

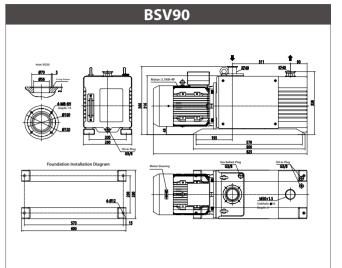

∃∆OSI V∆CUUM

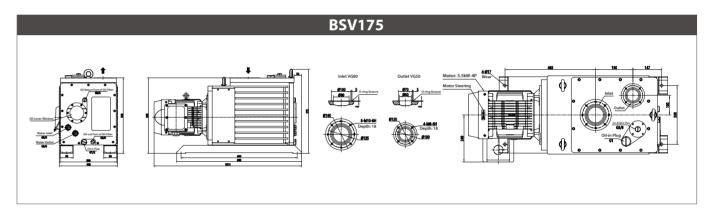

OIL ROTARY VANE VACUUM PUMP

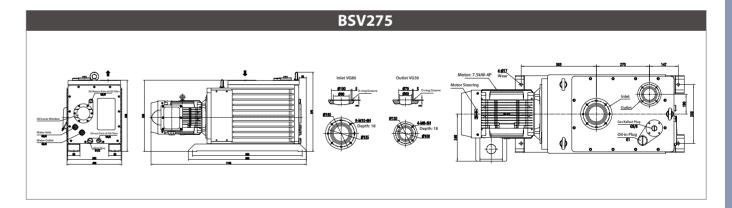

INSTALLATION DIAGRAM











ROOTS VACUUM PUMP

BSJ30L [70L 150L 300L 600L]

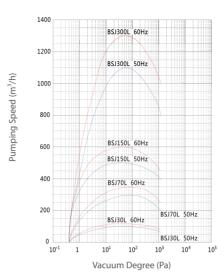
BSJ600LC [1200LC]

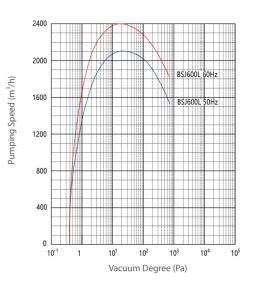
FEATURES

- The use of oil-free intermediate seal, multiple sealed way to ensure the high clean vacuum environment in the rotor chamber.
- Advanced processing to ensure the good geometrical symmetry of the rotors, as well as low noise and long service life.
- Special shaft seal is used to achieve the long stable running without oil leakage.
- Compact structure, light weight, and small volume.

DIRECT DRIVE TECHNICAL PARAMETER

		BSJ30L	BSJ70L	BSJ150L	BSJ300L	BSJ600L
50Hz	m³/h (L/min)	100 (1667)	280 (4670)	500 (8330)	1000 (16667)	2000 (33330)
60Hz	m³/h (L/min)	120 (2000)	330 (5500)	600 (10000)	1200 (20000)	2400 (40000)
50Hz	Pa	1.2X	(10 ³	1.3X	10 ³	8.0X10 ²
60Hz	Pa	9.3X	(10 ²	1.1X	10 ³	6.7X10 ²
50Hz	Pa	4.0X	(10 ³	7.3X	10 ³	5.6X10 ³
60Hz	Pa	3.3X	(10³	6.0X	10 ³	4.7X10 ³
	Pa			4.0X10 ⁻²		
Three Phase	kW	0.4	0.75	2.2	3.7	7.5
	V			380,400		
	L	0.4	0.8	1.6	2.0	4.0
Flow	L/min	-	2	2	3	3
Differential Pressure	MPa	-		0.	1	
Water Temp.	$^{\circ}$ C	-		5~3	30	
	-	VG50	VG80	VG80	VG100	VG200
	-	VF50	VF80	VF80	VF80	VF200
	$^{\circ}$			5~40		
	kg	30	51	80	115	227
	60Hz 50Hz 60Hz 50Hz 60Hz Three Phase	60Hz m³/h (L/min) 50Hz Pa 60Hz Pa 50Hz Pa 60Hz Pa 60Hz Pa Three Phase kW V L Flow L/min Differential Pressure MPa Water Temp. ℃	SOHz m³/h (L/min) 100 (1667) 60Hz m³/h (L/min) 120 (2000) 50Hz Pa 1.2½ 60Hz Pa 9.3½ 50Hz Pa 4.0½ 60Hz Pa 3.3½ Pa 0.4 V L 0.4 V Flow L/min - Differential Pressure MPa - Water Temp. °C - - VG50 - VF50	SOHz m³/h (L/min) 100 (1667) 280 (4670) 60Hz m³/h (L/min) 120 (2000) 330 (5500) 50Hz Pa 1.2X10³ 60Hz Pa 9.3X10² 50Hz Pa 4.0X10³ 60Hz Pa 3.3X10³ Pa V V Three Phase kW 0.4 0.75 V L 0.4 0.8 Flow L/min - 2 Differential Pressure MPa - Water Temp. °C - - VG50 VG80 - VF50 VF80	SOHz m³/h (L/min) 100 (1667) 280 (4670) 500 (8330) 60Hz m³/h (L/min) 120 (2000) 330 (5500) 600 (10000) 50Hz Pa 1.2X10³ 1.3X 60Hz Pa 9.3X10² 1.1X 50Hz Pa 4.0X10³ 7.3X 60Hz Pa 3.3X10³ 6.0X Pa 4.0X10² 4.0X10² Three Phase kW 0.4 0.75 2.2 V 380,400 1.6 Flow L/min - 2 2 Differential Pressure MPa - 0.0 Water Temp. °C - 5~3 VF50 VF80 VF80 °C 5~40	SOHz m³/h (L/min) 100 (1667) 280 (4670) 500 (8330) 1000 (16667) 60Hz m³/h (L/min) 120 (2000) 330 (5500) 600 (10000) 1200 (20000) 50Hz Pa 1.2X10³ 1.3X10³ 60Hz Pa 9.3X10² 7.3X10³ 60Hz Pa 4.0X10³ 6.0X10³ 60Hz Pa 3.3X10³ 6.0X10³ Pa 4.0X10² 4.0X10² Three Phase kW 0.4 0.75 2.2 3.7 V 380,400 380,400 4.0X10² 4.0X10²


[•] The value of 'ultimate pressure' in the sheet is measured by Pirani gauge when the Baosi special pump oil is used, and the value should be 4X10⁻³, if the Mcleod gauge is used.


∃∆OSI V∆CUUM

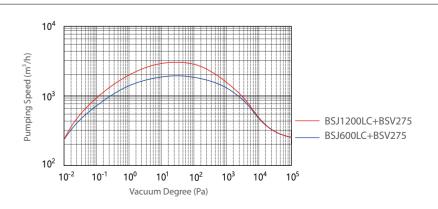
DIRECT DRIVE PUMP RATE CURVE

Vacuum gauge: Pirani vacuum gauge

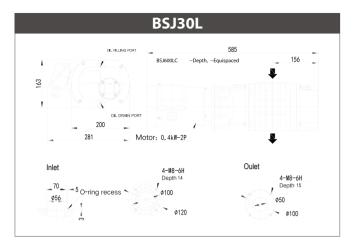
Vacuum pump oil: BAOSI vacuum special oil BSO-46

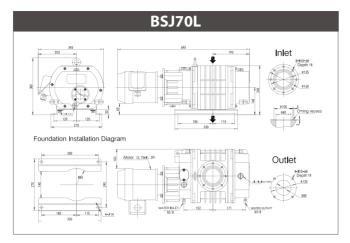
HYDRAULIC COUPLING TECHNICAL PARAMETER

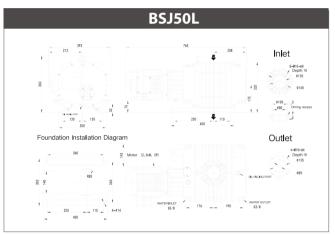
MODEL			BSJ600LC	BSJ1200LC
Dumping Data	50Hz	m³/h	2590	4140
Pumping Rate	60Hz	m³/h	3110	4985
Max Intake Pressure	50Hz	Pa	1.0×10	O ₂
(continuous operation)	60Hz	Pa	1.0×10	O ⁵
Max allowed	50Hz	Pa	8.0×10 ³	6.0×10 ³
differential pessure	60Hz	Pa	6.7×10 ³	5.0×10 ³
Ultimate Pressure		Pa	0.4	
Motor Power (2P)	Three Phase	kW	7.5	11
Lubricating Oil Specification		-	BSO-4	6
Gear Cover		L	3.5	
Hydraulic Drive		L	6.5	
Shaft Seal Reservoir		L	1.5	
	Flow	L/min	6	
Flow Rate	Differential Pressure	MPa	0.2~0.	.6
	Water Temp.	$^{\circ}$	5~35	
Weight		kg	350	420
Inlet		-	ISO160	ISO250
Outlet		-	ISO10	0

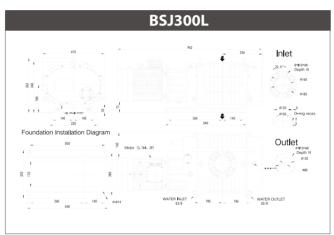

- $\bullet \ \text{Depending on the performance of the rough pump, the data in the table is the data used in combination with the standard rough pump.}$
- ullet The ultimate pressure is a value measured with a Pirani vacuum gauge, and is 4×10^{12} Pa as measured by a Mcleod vacuum gauge.
- The cooling water inlet temperature must be 5 to 35 °C. When the cooling water temperature is too low, the pump should be used in an environment where condensation does not occur.

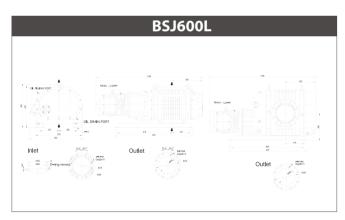
HYDRAULIC COUPLING PUMP RATE CURVE

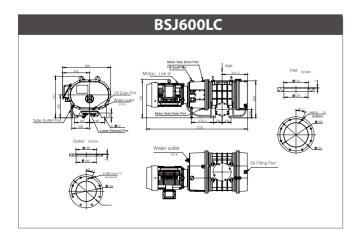

Power: 380V-50Hz

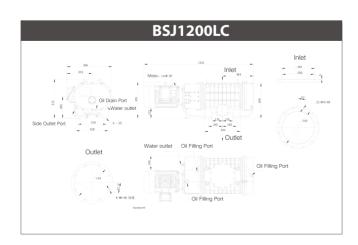

Vacuum gauge: Pirani vacuum gauge


Vacuum pump oil: special oil for BAOSI vacuum pump




INSTALLATION DIAGRAM





VACUUM PUMP SYSTEM

ROOTS VACUUM PUMP

APPLICATIONS

- Evaporation coating, sputtering coating, ion planting, optical coating etc.
- Single crystal furnace, polycrystalline furnace, vacuum heat treatment furnace, sintering furnace, annealing furnace, hardening furnace etc.
- Vacuum drying, freeze drying, leaking detection equipment and system, gas recovery system, LC injection etc.
- Refrigerator, air conditioners, central air-conditioning, LED, Back light automatic pumping line, exhaust equipment etc.

TECHNICAL PARAMETER OF ROOTS PUMP SYSTEM

		MODEL	JZ70A JZ70B	JZ150C	
					JZ300H
			JZ70C	JZ150D	
Parameter			JZ70D		
Ultimate Pressure	Pa			4X10 ⁻²	
	Roots Pump		BSJ70L	BSJ150L	BSJ300L
			BSV30	BSV60	BSV275
System	Oil Rotary		BSV40	BSV60	BSV275
	Oli Notal y		BSV60	BSV90	BSV275
			BSV90	BSV90	BSV275
	Roots pump (2P	")	0.75	2.2	3.7
			1.1	2.2	7.5
Motor (kW)	Oil Datama Daman	-(4D)	1.5	2.2	7.5
	Oil Rotary Pump	0(4P)	2.2	3.7	7.5
			3.7	3.7	7.5
	6. 1 1 1 6		0.8	1.6	2
	Standard oil of F	Roots pump		Standard oil of Roots Pump BSO46	
Oil Filling (L)			1.2~2.8	2.5~4.2	23~28
	Standard oil of (Oil Rotany pump	2.5~4.2	2.5~4.2	23~28
				Standard oil of Roots Pump BSO68	
		Roots Pump	-	Water Cooling	Water Cooling
	Cooling Way	Oil Rotary	-	-	Water Cooling
Cooling Water	Water Pressure In-Out Water Di	fferential Pressure		≤ 0.3 MPa(Gauge Pressure)/0.1MPa	3
	Water Temp. (℃)		5~30	
	Water Yield (L/m		2	4	6
Air Intake (OD)			V	580	VG100
Air Outlet (OD)			KI	=40	VG50
Options			1 Electric Cabinet: 2 Vacuu	m Gauge; 3 Suction Port Flange; 4 Filter;	5 Switch Of Cooling Water

SCREW DRY VACUUM PUMP

GSD Series

Dry screw vacuum pump is new kind of oil-free vacuum pump appeared in recent years. With the features of compact-size, high pumping speed, high vacuum rate, non-friction, long working life and pumping capacity of corrosive, toxic, condensed, dust gas, it becomes a perfect option for various of working conditions. The

main components of this pump are a couple of coarse pitch screw with opposite rotation and a pair of high-precision and hardened gears.

Based on two screw have absolutely opposite helical sensed and driven by synchronous gear, there is certain gap between the screw and chamber and between the two screws.

Our dry screw vacuum pump use the unique screw technology and leading driving technology to achieve the features of leading temperature controlling, advanced temperature control ,minimal mintenance requirements , better performance to lowest cost of ownership.

GSC Series

APPLICATIONS

Metallurgy

Vacuum brazing, Electron beam welding, Nitro carburizing, Low pressure nitriding, Low pressure carburizing, Chemical vapor phase impregnation, Sintering, Metal injection molding, Precision investment casting, Electroslag remelting, Vacuum induction melting, Vacuum arc refining, Steel liquid degassing etc.

Coating

Roll-to-roll coating, Hard coating (CVD/DLC), Surface activation, Plasma spraying, Glass coating etc.

Drvina

Freeze drying, Casing filling, Transformer drying, Pipeline drying, Capacitor drying, Lithium battery drying etc.

Plasma

Plasma welding, Ion nitriding, Plasma etching, Plasma cleaning etc.

Vacuum Chamber Exhausting

Space environment simulation, Gas recovery/ circulation, Vacuum chamber evacuation etc.

Photovoltaic

Single crystal silicon pulling, PV laminating, LED manufacturing etc.

Other

Laminator, Medical instrument etc.

FEATURES

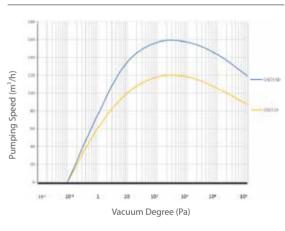
- Efficient rotor profile design with the high ultimate pressure.
- Oil-free, clean vacuum, combine with roots pump for system.
- Good geometrical symmetry, low noise, long working life.
- Remove condensable steam, dust, toxic and other gases, and will not be trapped in the pump chamber.
- Double-ended bearing support design for reliable rotor support, extremely low vibration and superior starting reliability, especially for special demanding process.
- Combined with lip-style seal and labyrinth oil-repellent structure to achieve strong sealing performance and long service life, with nitrogen purging to prevent gear box from the pollution of process medium to achieve oil-free vacuum environment.
- High-efficiency permanent magnet synchronous motor with frequency converter to maximize torque output for harsh processing demand; water-cooled integral sealed motor design to eliminate oil leakage to improve operational reliability, extend service life and reduce maintenance costs.
- Intelligent control system design to realize the one-button start and stop by using intelligent program. The pump chamber can be automatically cleaned during shut down, and the remote control and monitoring functions can be realized through the external control I/O interface and RS485 interface (Modbus protocol).
- Compact-size, few parts, few spares, stable running, light weight, small size, easy installation.

∃∆OSI V∆CUUM

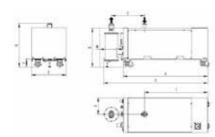
APPLICATION SOLUTION

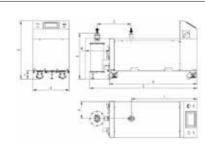
Whether you need a single vacuum pump, roots vacuum pump system or complete vacuum system, our range of pump types provides the best performance solution for your wide range of applications.

The following table are the typical application of dry screw vacuum pump. For other application, please contact us for advice.


		Purgin	ng mode	Acces	ssories
Application	Low loading Sealed purging	Medium loading Sealed purging+ ilution purging+ inlet purging when starting and stopping	High loading Medium loading +High flow purging or flux rinse when stopping	Inlet filter Metal net	Silencer Washable
Annealing	*				
CVI CVD		*	*	*	*
Electron Beam Welding		*		*	
Gas Quenching	*				
LPC Low Pressure Carburizing		*	*	*	*
LPN Low Pressure Carburizing	*				
Sintering +Dewaxing		*	*	*	
Oil Quenching		*		*	
PIC Precision Investment Casting		*	*		
Ion Carburizing	*				
Tempering	*				
Vacuum Brazing		*	*	*	
VAR		*	*	*	
VIM		*	*	*	

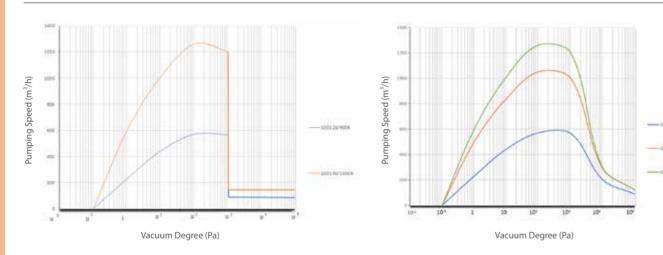
Note: The mark "★" is the applicable situation

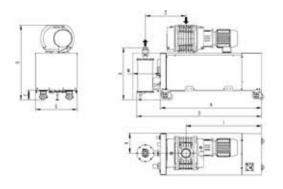

GSD SERIES PUMP

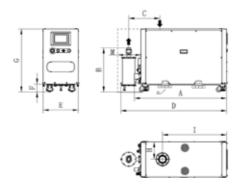

MODEL			GSD120B	GSD160B	GSD160D	
Speed (without	purging)	m³/h	120	160	160	
Ultimate pressu	re (without purging)	Pa	≤ 0.5	≤ 0.5	≤ 0.5	
Mater	Motor power	kW	3.7	5.5	5.5	
Motor	Voltage (3 phase)	V		380/400		
Interface	Inlet	_		KF40		
interrace	Outlet	-		KF40		
	Pressure	MPa		0.1~0.4		
Cli	Flow	L/min		≥ 4		
Cooling water	Temprature	$^{\circ}$ C		5~30		
	Interface	-		G3/8		
	Pressure	MPa		0.2~0.6		
N ₂ Purging	Flow	L/min		12~50		
	Interface	_		G1/4		
Max Allowed O	utlet Pressure	MPa	0.14			
Niose (with silencer and check valve)		dB	≤ 70			
Water Temp.		$^{\circ}$	5~40 °C / Below 90% RH			
Weight		kg	~325	~340	~350	

PUMPING RATE CURVE

INSTALLATION DIAGRAM

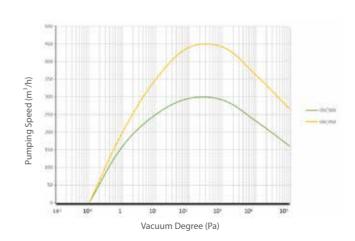

MODEL	А	В	С	D	Е	F	G	Н	I	М	INLET	OUTLET
GSD120B	1100	505	430	1350	450	100	570	215	820	300	KF40	KF40
GSD160B	1100	505	430	1350	450	100	570	215	820	300	KF40	KF40
GSD160D	1100	570	430	1360	450	100	725	216	820	300	KF40	KF40


GSD SERIES PUMP SYSTEM

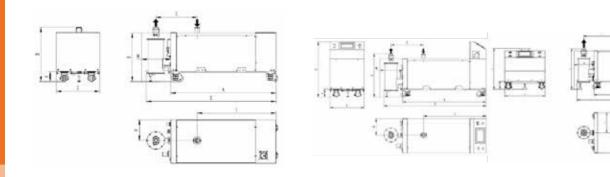

MODEL			GSD120/600B	GSD160/1300B	GSD120/600D	GSD160/1080D	GSD160/1300D
Speed (without p	urging)	m³/h	600	1300	600	1080	1300
Ultimate Pressure	(without purging)	Pa	≤ 0.1	≤ 0.1	≤ 0.1	≤ 0.1	≤ 0.1
Matau	Motor power	kW	2.2+3.7	3.7+5.5	2.2+3.7	3.7+5.5	3.7+5.5
Motor	Voltage (3 phase)	V			380/400		
Interface	Inlet	-	VG80	VG100	VG80	VG100	VG100
interrace	Outlet	-			KF40		
	Pressure	MPa			0.1~0.4		
Caalina Matau	Flow	L/min			≥ 4		
Cooling Water	Temprature	°C			5~30		
	Interface	-			G3/8		
	Pressure	MPa			0.2~0.6		
N ₂ Purging	Flow	L/min			12~50		
	Interface	-			G1/4		
Max Allowed Out	let Pressure	MPa			0.14		
Niose (with silence	er and check valve)	dB	≤ 70	≤ 72	≤ 68	≤ 70	≤ 70
Water Temp.		$^{\circ}$		5	~40 °C / Below 90% RH		
Weight		kg	~425	~475	~455	~490	~495

PUMPING RATE CURVE

GSD INSTALLATION DIAGRAM


MODEL	Α	В	C	D	Е	F	G	Н		M	INLET	OUTLET
GSD120/600B	1100	570	430	1350	450	100	825	216	820	300	VG80	KF40
GSD160/1300B	1100	570	430	1350	450	100	825	216	820	300	VG100	KF40
GSD120/600D	1100	570	430	1350	450	100	825	216	820	300	VG80	KF40
GSD160/1080D	1100	570	430	1350	450	100	825	216	820	300	VG100	KF40
GSD160/1300D	1100	570	430	1350	450	100	825	216	820	300	VG100	KF40

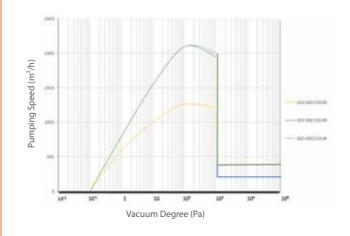
GSC SERIES PUMP

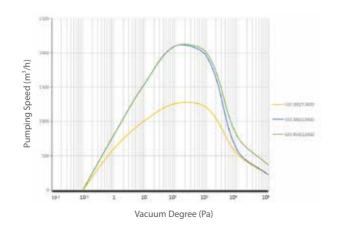

MODEL			GSC300B	GSC450B
Speed (without pu	rging)	m³/h	300	450
Ultimate Pressure (without purging)	Pa	≤ 0.5	≤ 0.5
Motor	Motor power	kW	5.5	11
MOTOL	Voltage (3 phases)	V		380/400
Interface	Inlet	-	KF50	ISO100
interrace	Outlet	-	KF40	KF50
	Pressure	MPa	0.1~0.4	0.1~0.3
Caalina Water	Flow	L/min	≥ 4	≥ 6
Cooling Water	Temprature	$^{\circ}$		5~30
	Interface	-		G3/8
	Pressure	MPa		0.2~0.6
N ₂ Purging	Flow	L/min	12~50	23~90
	Interface	-		G1/4
Max Allowed Outle	t Pressure	MPa		0.14
Niose (with silence	r and check valve)	dB	≤ 70	≤ 73
Water Temp.		$^{\circ}$	5~4	40 °C / Below 90% RH
Weight		kg	~355	~530

			******	******
MODEL			GSC300D	GSC450D
Speed (without pu	ırging)	m³/h	300	450
Ultimate Pressure	(without purging)	Pa	≤ 0.5	≤ 0.5
Motor	Motor power	kW	5.5	11
MOTOL	Voltage (3 phase)	V		380/400
Interface	Inlet	-	KF50	ISO100
interrace	Outlet	-	KF40	KF50
	Interface	-		G3/8
	Pressure	MPa	0.1~0.4	0.1~0.3
Caaliaa Matau	Flow	L/min	≥ 4	≥ 6
Cooling Water	Temprature	$^{\circ}$		5~30
	Interface	-		G1/4
N. D	Pressure	MPa		0.2~0.6
N ₂ Purging	Flow	L/min	12~50	23~90
Max Allowed Outle	et Pressure	MPa		0.14
Niose (with silence	er and check valve)	dB	≤ 70	≤ 73
Water Temp.		$^{\circ}$	5~40 °C	C / Below 90% RH
Weight		kg	~365	~540

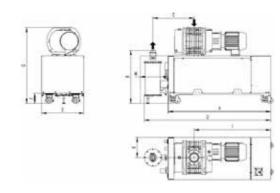
PUMPING RATE CURVE

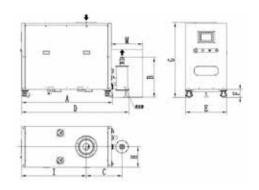
GSD INSTALLATION DIAGRAM



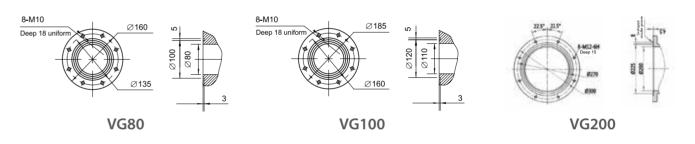

MODEL	А	В	С	D	E	F	G	Н	I	М	INLET	OUTLET
GSC300B	1100	570	430	1350	450	100	570	216	820	300	KF50	KF40
GSC450B	1300	600	519	1558	600	11	605	300	940	300	ISO100	KF50
GSC300D	1130	560	380	1360	450	90	650	220	820	300	KF50	KF40
GSC450D	1300	600	519	1558	600	115	605	300	940	300	ISO100	KF50

GSC SERIES PUMP SYSTEM


MODEL			GSC300/1300B	GSC450/2200B	GSC300/1300D	GSC300/2200D	GSC450/2200D
MODEL			G3C300/1300B			G3C300/2200D	
Speed (without p	urging)	m³/h	1300	2200	1300	2200	2200
Ultimate Pressure	(without purging)	Pa	≤ 0.1	≤ 0.1	≤ 0.1	≤ 0.1	≤ 0.1
Motor	Motor power	kW	3.7+5.5	7.5+11	3.7+5.5	7.5+5.5	7.5+11
MOTOL	Voltage (3 phase)	V			380/400		
latarfa as	Inlet	-	VG100	VG200	VG100	VG200	VG200
Interface	Outlet	-	KF40	KF50	KF40	KF40	KF50
	Pressure	MPa	0.1~0.4	0.1~0.3	0.1~0.4	0.1~0.4	0.1~0.3
Carlina Mana	Flow	L/min	≥ 4	≥ 6	≥ 4	≥ 4	≥ 6
Cooling Water	Temprature	$^{\circ}$			5~30		
	Interface	-			G3/8		
	Pressure	MPa			0.2~0.6		
N ₂ Purging	Flow	L/min	12~50	23-90	12~50	12~50	23-90
	Interface	-			G1/4		
Max Allowed Out	let Pressure	MPa			0.14		
Niose (with silence	er and check valve)	dB	≤ 72	≤ 75	≤ 70	≤ 72	≤ 75
Water Temp.		$^{\circ}$		5	~40 °C / Below 90% RH		
Weight		kg	~490	~820	~515	~650	~850


PUMPING RATE CURVE

GSC INSTALLATION DIAGRAM



MODEL	А	В	C	D	Е	F	G	Н	I	М	INLET	OUTLET
GSC300/1300B	1100	570	430	1350	450	100	825	216	820	300	VG100	KF40
GSC450/2200B	1340	580	520	1580	600	115	1100	300	940	450	VG200	KF50
GSC300/1300D	1100	570	430	1350	450	100	825	216	820	300	VG100	KF40
GSC300/2200D	1340	580	520	1580	600	115	1100	300	940	450	VG200	KF50
GSC450/2200D	1340	580	520	1580	600	115	1100	300	940	450	VG200	KF50

FLANGE SIZE

Single pump inlet flange is KF50 or KF40. Vacuum system inlet flange is VG80/ VG100 or VG200 as following size.

ACCESSORIES

The available with a wide range of accessories for a wide range of applications. The cost is saved on the premise of satisfying the user's requirements. All accessories can be fully integrated with the dry screw vacuum pump to create an efficient and safe system.

Inlet Adapter Flange

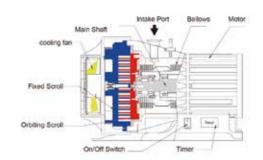
Due to the different connections of each device, we offer a range of inlet adapter flanges for vacuum pump. These flanges allow the installation of air intake filter and functional interface to ensure easy connection to the customer's equipment.

Intake Filter

Screw vacuum pump has excellent dust handling capacity in many applications. However, the screw vacuum pump cannot continuously extract solid matter, so in some applications, installing the air intake filter can greatly extend the maintenance interval of the vacuum pump.

Silencer

In order to reduce the noise of the exhausting, it's absolutely necessary to equip the silencer of the pump. We provide customers with standard silencer as well as a variety of silencer customization service according to the working conditions.


Check Valve

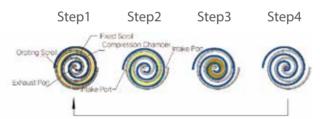
We choose the exhaust check valve according to the pressure of customer's working condition to minimize the noise of the vacuum pump.

◎ B∆OSI V∆CUUM

SCROLL VACUUM PUMP

GSP3 [10]

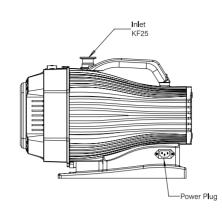
Scroll pump is a new kind of oil-free mechanical pump with features of simple construction, good sealing, high vacuum ect. As a high-technology product, it has highly technical requirement in desigh and manufacture. With

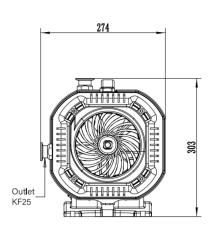

benefits of low consumption, long working life, high reliability, and low noise, It has incomparable advantages in the application of clean process and has been popularly used in the market. GVD, GSP series scroll dry pumps are scroll dry pumps with excellent performance and obvious price competitiveness, which are introduced by Baosi Vacuum for the characteristics of downstream applications at home and abroad.

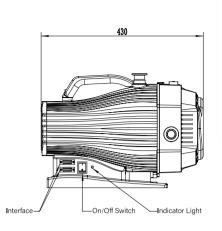
APPLICATIONS

Clean vacuum, Backing turbomolecular pumps, Library, Analysis equipment, Leak detection, Beam line, Scientific researching, Medical equipment, Distillation/extraction/filtration, Laser, Semiconductor (LED/LCD), Photovoltaic, Coating (PVD/CVD), Battery, Glove box, Beam welding/laser welding, Space simulation.

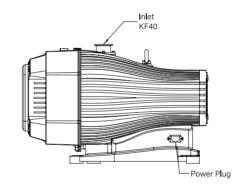
WORKING PRINCIPLE

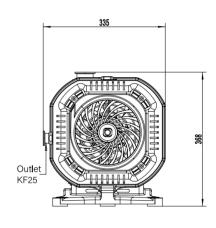

- Step1. Gas enters scroll set
- Step2. Gas is displaced and...
- Step3. ...compressed toward center hub
- Step4. Gas exhausted at center hub

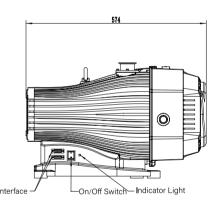


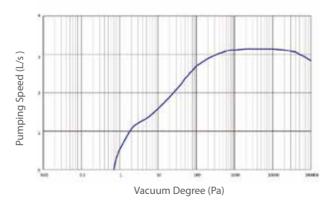

TECHNICAL PARAMENT

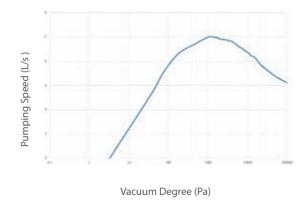
MODEL		GSP3	GSP10
MODEL		GSP3	GSP10
Nominal Rotation Speed	rpm	1800	1800
Displacement	L/s	3	10.5
Ultimate Vacuum	mbar	0.008	0.01
Motor Power	W	400	1100
Voltage Input	V	1- phase 100-240	1- phase100-240
Dimensions	mm	430×255×290 (L×W×H)	574×335×368 (L×W×H)
Noise Level	dB(A)	54	56
Inlet Flange	-	NW 25	NW 40
Exhaust Flange	-	NW 25	NW 25
Max Water Vapour Pumping Rate	gh ⁻¹	100	200
Leak Tightness	mbar·l/s	< 1×10 ⁻⁶	< 1×10 ⁻⁶
Weight	kg	28	50
Cooling System	-	Air-cooled	Air-cooled
Operating Temperature	°C	10 to 40	10 to 40


GSP3 INSTALLATION DIAGRAM






GSP10 INSTALLATION DIAGRAM



PUMPING RATE CURVE

GSP3 GSP10

22

HI-VACUUM ANGLE VALVES

GD

GDQ

GDC

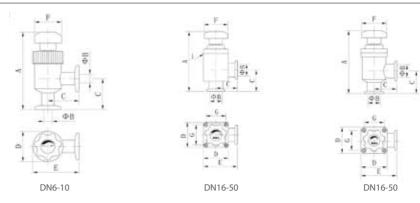
This valve is suitable for working medium with air and non-corrosive gas. It is used to cut or turn on the vacuum line and is one of the

important components of the vacuum system. The hand wheel is turned by hand (manual) or compressed air (pneumatic) as the driving force

and the mechanism is connected with valve plate to lift and lower, and the valve opening and closing action is completed.

FEATURES

- Modular two-position three-way solenoid valve to realize quick combination by simple operation to meet different needs of customers.
- Dust-proof design for application with a small amount of dust.
- Dynamic seal with welding corrugated pipe in AM350 material for more than million times service life.
- The open/close position is mechanical micro switch, which is sensitive to reaction, reliable in output and strong in anti-interference.
- With mechanical position indication.
- Easy to replace and repair.
- Anodized surface of valve body.

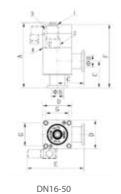

APPLICATION

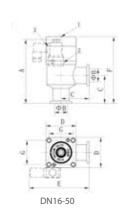
Widely applied in semiconductor, photovoltaic, new energy, pharmaceutical, scientific reserrch, laboratory, chemical, light industry, metallurgy, petroleum, machinery, electronics and other industries, as well as electric vacuum device manufacturing, light bulbs, vacuum flask manufacturing, vacuum welding, vacuum casting, instrumentation, printing and packaging machinery, etc.

GD SERIES HV MANUAL VALVE PARAMETER

MODEL			GD-J16B	GD-J25B	GD-J40B	GD-J50B		
DN		mm	16	25	40	50		
Pressure Ran	nge	Pa		1×10 ⁻⁶	~ 5×10 ⁵			
Pressure	Opening Direction	Pa		1.2	×10 ⁵			
Differential	Closure Direction	Pa		5>	<10 ⁵			
Opening Pre	essure Differential	Pa		≤ 1.2×10 ⁵ Ar	ny Orientation			
Leak Rate		Pa·L/s	≤ 1.3×10 ⁻⁷					
Switching C	ycles	_		1 Millio	n Times			
Conductano	e	L/s	4.5	14	45	80		
Temperature	е	$^{\circ}$		≤	120			
Opening/Clo	osure Time	S		Manual Ope	eration Time			
Position Ind	ication	_	Mechanical Indicator					
Installation	Position	_		Aı	ny			
Ambient Ter	mperature	$^{\circ}$	5~40					

APPREARANCE AND FIXING DIMENSION DRAWING


MODEL	DN	Dimension Table (mm)								
MODEL	DN	Α	В	C	D	E	F	G		
GD-J6~10(B)	6~10	90.4	6~10	35	36	53	32	_		
GD-J16(B)	16	110	16	40	46	63	40	35		
GD-J25(B)	25	120	25	50	54	77	50	43		
GD-J40(B)	40	151	40	65	74	102	60	61		
GD-J50(B)	50	170	50	70	78	109	60	65		

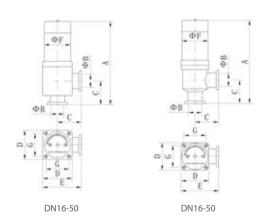

GDQ SERIES HV PNEUMATIC VALVE PARAMETER

MODEL			GDQ-J16(B)	GDQ-J25(B)	GDQ-J40(B)	GDQ-J50(B)
DN		mm	16	25	40	50
Pressure Range	2	Pa		$1 \times 10^{-5} \sim 5 \times 10^{5}$ (1)	×10 ⁻⁶ ~ 5×10 ⁵)	
Pressure O	pening Direction	Pa		1.2×1	10 ⁵	
Differential C	losure Direction	Pa		5×10	O ⁵	
Opening Pressi	ure Differential	Pa		≤ 1.2×10 ⁵ Any	Orientation	
Leak Rate		Pa·L/s		≤ 1.3×	10 ⁻⁷	
Switching Cycle	es	_		1 Million T	Times	
Conductance		L/s	4.5	14	45	80
Temperature		$^{\circ}$ C		≤ 12	0	
Power		_		A/C 220V 50Hz or	D/C 24V,3W,	
Opening/Closu	ire Time	S		≤ 0.7	7	
Compressed Ai	ir	MPa		0.4~0.	7	
Position Indica	tion	_		Passive Switch Signal + N	Mechanical Indicator	
Installation Pos	sition	_		Any		
Ambient Temp	erature	$^{\circ}$		5~40)	

APPREARANCE AND FIXING DIMENSION DRAWING

- Mechanical Indicator
- Compressed Air Connection
- Module Components (Standard) Leak Detection Hole

MODEL	DN	Dimension Table (mm)								
MODEL	DIN	Α	В	C	D	Е	F	G		
GD-J6~10(B)	6~10	90.4	6~10	35	36	53	32	_		
GD-J16(B)	16	110	16	40	46	63	40	35		
GD-J25(B)	25	120	25	50	54	77	50	43		
GD-J40(B)	40	151	40	65	74	102	60	61		
GD-J50(B)	50	170	50	70	78	109	60	65		


◎ B∆OSI V∆CUUM

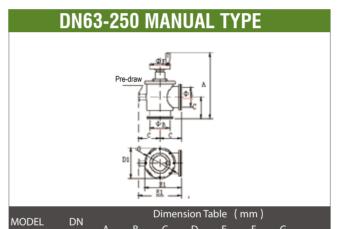
◎ B∆OSI V∆CUUM

GDC SERIES HV ELCTROMAGNETIC VALVE PARAMETER

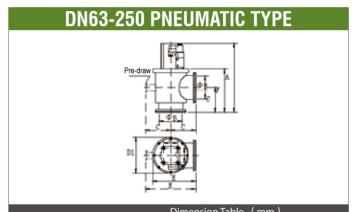
MODEL			GDC-J16(B)	GDC-J25(B)	GDC-J40(B)	GDC-J50(B)			
DN		mm	16	25	40	50			
Pressure Ran	nge	Pa		1×10 ⁻⁵ ~1×10 ⁵	$(1\times10^{-6}\sim1\times10^{5})$				
Pressure	Opening Direction	Pa		≤	1×10 ⁵				
Differential	Closure Direction	Pa		≤	5×10⁵				
Differential (Opening Pressure	Pa		≤ 1×10 ⁵ Ar	ny Orientation				
Leak Rate Pa·L/s				≤ 1.3x10 ⁻⁷					
Number Of First Maintenance Cycles —			200 000						
Valve Body B	Baking Temperature	$^{\circ}$ C		≤ 120					
Power Suppl	ly	_		Ue: AC220V 50Hz Use	Je: AC220V 50Hz Use Range: 85% Ue ~110% Ue				
Starting / Wo	orking Power	_	600/0.7	800/1	1000/2	1400/3			
On Or Off Tir	me	S		Open ≤ 0.2 / Close ≤ 0.5					
Operating Fr	requency	_		≤	300				
Valve Positio	on Indication	_		Live indication LED + on signal					
Installation Position —				Any					
Ambient Ten	nperature	°C		5~40					

APPREARANCE AND FIXING DIMENSION DRAWING

MODEL	DN			Dimensi	on Table	(mm)		
MODEL	DIN	Α	В	C	D	Е	F	G
GD-J6~10(B)	6~10	90.4	6~10	35	36	53	32	_
GD-J16(B)	16	110	16	40	46	63	40	35
GD-J25(B)	25	120	25	50	54	77	50	43
GD-J40(B)	40	151	40	65	74	102	60	61
GD-J25(B)	25	120	25	50	54	77	50	43
GD-J40(B)	40	151	40	65	74	102	60	61
GD-J25(B)	25	120	25	50	54	77	50	43
GD-J40(B)	40	151	40	65	74	102	60	61

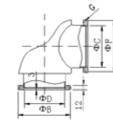

GD SERIES HV MANUAL VALVE PARAMETER

MODEL		GD-J63(B)	GD-J80(B)	GD-J100(B)	GD-S160B			
DN	mm	63	80	100	150			
Pressure Range	Pa		1×10 ⁻⁵ ~3×10 ⁵	(1×10 ⁻⁶ ~3×10 ⁵)				
Pressure Opening Direction	Pa		≤ 1	1.0×10 ⁵				
Differential Closure Direction	Pa		≤ 3×10 ⁵					
Opening Pressure Differential	Pa	≤ 1.0×10 ⁵ Any Orientation						
Leak Rate	Pa·L/s	≤ 1.3×10 ⁻⁷						
Switching Cycles	_		800	000				
Conductance	L/s	160	200	440	1000			
Temperature	$^{\circ}$		€	120				
Opening/Closure Time	S		Manual Op	eration Time				
Position Indication	_	Mechanical Indicator						
Installation Position	_		A	ny				
Ambient Temperature	$^{\circ}$		5-	~40				

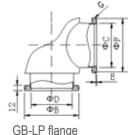

GDQ SERIES HV PNEUMATIC VALVE PARAMETER

MODEL			GDQ-J63(B)	GDQ-J80(B)	GDQ-J100(B)	GDQ-J160(B)	GDQ-S200(B)	GDQ-S250(B)		
DN mm			63	80	100	150	200	250		
Pressure Range		Pa			1×10 ⁻⁵ ~3×10 ⁵	(1×10 ⁻⁶ ~3×10 ⁵)				
Pressure	Opening Direction	Pa			≤1.	0×10 ⁵				
Differential	Closure Direction	Pa		≤3×10 ⁵						
Opening Pro	essure Differential	Pa	≤ 1.0 × 10 ⁵ Any Orientation							
Leak Rate Pa·L/s		Pa·L/s	≤ 1.3×10 ⁻⁷							
Switching Cycles —		_	1 Million Times							
Conductano	ce	L/s	4.5	14	45	80	45	80		
Temperatur	e	$^{\circ}$	≤ 120							
Power		_			A/C 220V 50Hz	or D/C 24V,3W,				
Opening/Cl	osure Time	S	16	25	40	50	50	50		
Compressed	d Air	MPa			0.4	~0.7				
Position Ind	Position Indication —				Magnet	ic Switch				
Installation	Position	_	Any							
Ambient Te	mperature	$^{\circ}$ C			5~	-40				

APPREARANCE AND FIXING DIMENSION



MODEL	DN			Dimer	nsion T	īable (mm)		
MODEL	DIN	Α	В	C	D	Е	F	G	
GD-J63B)	63	280	63	88	123	149.5	80	111	-
GD-J80(B)	80	295	80	98	133	164.5	80	121	-
GD-J100(B)	100	328.5	99	108	154	185	100	142	-
GD-S160(B)	150	393	153	138	235	255.5	100	220	-



MODEL	DN			Dimer	ision i	able (mm)		
WODLL	DIN	Α	В	C	D	Ε	F	G	
GDQ-J63(B)	63	255	63	88	108	142	154	40	_
GDQ-J80(B)	80	267	80	98	118	157	168.5	50	_
GDQ-J100(B)	100	306	100	108	137	176.5	190	60	_
GDQ-J160(B)	150	406.5	153	138	208	242	253.5	94	_
GDQ-S200(B)	200	503	200	178	258	356	320	94	KF50
GDQ-S250(B)	250	608	250	208	310	416	410	94	LF63

FLANGE SIZE

					arige		
있는	DN	63	80	100	160	200	2
9 9	В	95	110	130	180	240	2
	C	70	83	102	153	213	2
	D	63	80	99	153	200	2
	E	_	_	_	_	_	-
	F	92	107	127	175	235	2
	G	1.5	1.5	1.5	2.5	2.5	2

		(GB-LP	flange	9	
DN	63	80	100	160	200	250
В	95	110	130	180	240	290
C	68	85	105	165	208	258
D	63	80	99	153	200	250
E	2.4	2.4	2.4	2.4	3.6	3.6
F	92	107	127	175	235	285
G	1.5	1.5	1.5	2.5	2.5	2.5

∃∆OSI V∆CUUM

◎ B∆OSI V∆CUUM

MORANDUM

OIL / VACUUM FLANGE AND FITTING

VACUUM PUMP OIL

BSO68 is used for two-stage oil rotary vane vacuum pumps; BSO46 is used for Roots vacuum pumps; BSO100 is used for single-stage oil rotary vane vacuum pumps.

BSO46

BSO68

BSO100

OIL MIST FILTER

When the oil rotary vacuum pump is operated at atmospheric pressure or under low vacuum, the oil will be discharged together with the gas which has been pumped. This kind of exhaust gas is composed of many tiny oil droplets, and exhausted in the form of smoke through the pump outlet. The oil mist filter is used to ensure a clean environment to protect the equipment from oil mist pollution.

MODEL	BSF10	BSF	30	BSF120
Filter Model	10L	30	L	120L
Maximum Processing Flow M³/h (L/min)	36(10)	108((30)	432(120)
Air Inlet	KF25	KF4	40	VF50
Exhaust Vent	KF25	KF4	40	G4
Applicable Pump	DRV10/ DRV16 DRV24	BSV30/40 (For high loads)	BSV60/90 (For low loads)	BSV175 BSV275
Weight (kg)	1	7.	40	

VACUUM FLANGE AND FITTING

Note: The following illustration shows that some products are subject to various standard and non-standard product customization.

		II IOD
	VACL	JUIII

® ∂∆OSI V∆CUUM			

MEMORANDUM